Humanloop
Humanloop enables product teams to build robust AI features with LLMs, using best-in-class tooling for Evaluation, Prompt Management, and Observability.
Getting Started
Use Humanloop to manage prompts across all LiteLLM Providers.
- SDK
- PROXY
import os
import litellm
os.environ["HUMANLOOP_API_KEY"] = "" # [OPTIONAL] set here or in `.completion`
litellm.set_verbose = True # see raw request to provider
resp = litellm.completion(
model="humanloop/gpt-3.5-turbo",
prompt_id="test-chat-prompt",
prompt_variables={"user_message": "this is used"}, # [OPTIONAL]
messages=[{"role": "user", "content": "<IGNORED>"}],
# humanloop_api_key="..." ## alternative to setting env var
)
- Setup config.yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: humanloop/gpt-3.5-turbo
prompt_id: "<humanloop_prompt_id>"
api_key: os.environ/OPENAI_API_KEY
- Start the proxy
litellm --config config.yaml --detailed_debug
- Test it!
- CURL
- OpenAI Python SDK
curl -L -X POST 'http://0.0.0.0:4000/v1/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "THIS WILL BE IGNORED"
}
],
"prompt_variables": {
"key": "this is used"
}
}'
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
],
extra_body={
"prompt_variables": { # [OPTIONAL]
"key": "this is used"
}
}
)
print(response)
Expected Logs:
POST Request Sent from LiteLLM:
curl -X POST \
https://api.openai.com/v1/ \
-d '{'model': 'gpt-3.5-turbo', 'messages': <YOUR HUMANLOOP PROMPT TEMPLATE>}'
How to set model
How to set model
Set the model on LiteLLM
You can do humanloop/<litellm_model_name>
- SDK
- PROXY
litellm.completion(
model="humanloop/gpt-3.5-turbo", # or `humanloop/anthropic/claude-3-5-sonnet`
...
)
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: humanloop/gpt-3.5-turbo # OR humanloop/anthropic/claude-3-5-sonnet
prompt_id: <humanloop_prompt_id>
api_key: os.environ/OPENAI_API_KEY
Set the model on Humanloop
LiteLLM will call humanloop's https://api.humanloop.com/v5/prompts/<your-prompt-id>
endpoint, to get the prompt template.
This also returns the template model set on Humanloop.
{
"template": [
{
... # your prompt template
}
],
"model": "gpt-3.5-turbo" # your template model
}